
Create a reporting_triangle object from a data.frame
Source: R/as_reporting_triangle.R
as_reporting_triangle.data.frame.RdThis method takes a data.frame containing case counts indexed by reference
date and report date and creates a reporting_triangle object.
See as_reporting_triangle.matrix() for other data
input options.
Usage
# S3 method for class 'data.frame'
as_reporting_triangle(
data,
delays_unit = "days",
reference_date = "reference_date",
report_date = "report_date",
count = "count",
...
)Arguments
- data
Data.frame in a long tidy format with counts by reference date and report date. Must contain the following columns: . - Column of type
dateor character with the dates of the primary event occurrence (reference date).Column of type
dateor character with the dates of report of the primary event (report_date).Column of numeric or integer indicating the new confirmed counts pertaining to that reference and report date (count). Additional columns can be included but will not be used. The input dataframe for this function must contain only a single strata, there can be no repeated reference dates and report dates.
- delays_unit
Character string specifying the temporal granularity of the delays. Options are
"days","weeks","months","years". Default is"days".- reference_date
Character string indicating the name of the column which represents the reference date, or the date of the primary event occurrence.
- report_date
Character string indicating the name of the column which represents the date the primary event was reported.
- count
Character string indicating the name of the column containing the number of incident cases on each reference and report date.
- ...
Additional arguments not used.
Value
A reporting_triangle object
See also
Reporting triangle construction and validation
[.reporting_triangle(),
[<-.reporting_triangle(),
as.data.frame.reporting_triangle(),
as.matrix.reporting_triangle(),
as_ChainLadder_triangle(),
as_reporting_triangle(),
as_reporting_triangle.matrix(),
as_reporting_triangle.triangle(),
assert_reporting_triangle(),
get_delays_from_dates(),
get_delays_unit(),
get_max_delay(),
get_mean_delay(),
get_quantile_delay(),
get_reference_dates(),
get_report_dates(),
get_reporting_structure(),
head.reporting_triangle(),
is_reporting_triangle(),
new_reporting_triangle(),
print.reporting_triangle(),
reporting_triangle-class,
summary.reporting_triangle(),
tail.reporting_triangle(),
truncate_to_delay(),
truncate_to_quantile(),
validate_reporting_triangle()
Examples
# Filter to reasonable max_delay for faster example
data_as_of_df <- syn_nssp_df[
syn_nssp_df$report_date <= "2026-04-01" &
(syn_nssp_df$report_date - syn_nssp_df$reference_date) <= 25,
]
as_reporting_triangle(data = data_as_of_df)
#> ℹ Using max_delay = 25 from data
#> Reporting Triangle
#> Delays unit: days
#> Reference dates: 2025-10-25 to 2026-04-01
#> Max delay: 25
#> Structure: 1
#>
#> Showing last 10 of 159 rows
#> Showing first 10 of 26 columns
#>
#> 0 1 2 3 4 5 6 7 8 9
#> 2026-03-23 210 131 34 50 35 12 1 25 20 6
#> 2026-03-24 221 96 22 10 13 6 0 5 9 NA
#> 2026-03-25 291 129 17 26 42 29 23 25 NA NA
#> 2026-03-26 179 96 22 50 9 8 18 NA NA NA
#> 2026-03-27 284 40 41 54 28 12 NA NA NA NA
#> 2026-03-28 217 78 46 14 39 NA NA NA NA NA
#> 2026-03-29 336 161 62 13 NA NA NA NA NA NA
#> 2026-03-30 296 53 55 NA NA NA NA NA NA NA
#> 2026-03-31 210 108 NA NA NA NA NA NA NA NA
#> 2026-04-01 236 NA NA NA NA NA NA NA NA NA
#>
#> Use print(x, n_rows = NULL, n_cols = NULL) to see all data